MTH 301 Quiz 1 Solutions

1. Let G be a finite group, and let $H, K \leq G$. Using the orbit-stabilizer theorem establish that

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

Solution. Consider the map

$$
(H \times K) \times G \xrightarrow{\varphi} G:((h, k), g) \stackrel{\varphi}{\mapsto}(h, k) \cdot g=h g k^{-1} .
$$

We claim that this map indeed defines an action $H \times K \curvearrowright G$. First, we note that from the basic group axioms in G, it follows that φ is a well-defined function (Verify this!). Now, if we consider the identity $(1,1) \in H \times K$, we see that

$$
(1,1) \cdot g=\varphi((1,1), g)=1 \cdot g \cdot 1=g, \forall g \in G .
$$

Furthermore, we have

$$
\begin{aligned}
\left.\left(h_{1}, k_{1}\right) \cdot\left(\left(h_{2}, k_{2}\right) \cdot g\right)\right) & =\varphi\left(\left(h_{1}, k_{1}\right), \varphi\left(\left(h_{2}, k_{2}\right), g\right)\right) \\
& =h_{1}\left(h_{2} g k_{2}^{-1}\right) k_{1}^{-1} \\
& =\left(h_{1} h_{2}\right) g\left(k_{1} k_{2}\right)^{-1} \\
& =\left(h_{1} h_{2}, k_{1} k_{2}\right) \cdot g,
\end{aligned}
$$

which shows that φ defines an action $H \times K \curvearrowright G$.
Under this action, we see that

$$
\mathcal{O}_{1}=\left\{h k^{-1}:(h, k) \in H \times K\right\}=H K
$$

which shows that

$$
\begin{equation*}
\left|\mathcal{O}_{1}\right|=|H K| . \tag{1}
\end{equation*}
$$

(Can you determine what is \mathcal{O}_{g} when $g \neq 1$?)
Furthermore, the stabilizer of 1 under this action is given by

$$
\begin{aligned}
(H \times K)_{1} & =\{(h, k) \in H \times K:(h, k) \cdot 1=1\} \\
& =\left\{(h, k) \in H \times K: h k^{-1}=1\right\} \\
& =\{(h, k) \in H \times K: h=k\} \\
& =H \cap K,
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
\left|(H \times K)_{1}\right|=|H \cap K| . \tag{2}
\end{equation*}
$$

(Can you determine what is $(H \times K)_{g}$ when $g \neq 1$?)
From the Orbit-Stabilizer theorem, we have that

$$
\begin{equation*}
\left|\mathcal{O}_{1}\right|=\frac{|H \times K|}{\left|(H \times K)_{1}\right|} \tag{3}
\end{equation*}
$$

The assertion now follows by substituting the appropriate values from (1) and (2) in (3).
2. Consider the action of the matrix group

$$
\mathrm{GL}(2, \mathbb{Z})=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{Z} \text { and } a d-b c= \pm 1\right\}
$$

on $\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}$ defined by

$$
\operatorname{GL}(2, \mathbb{Z}) \times \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}:\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],\left(z_{1}, z_{2}\right)\right) \mapsto\left(a z_{1}+b z_{2}, c z_{1}+d z_{2}\right)
$$

Show that each orbit comprises the elements in \mathbb{Z}^{2} whose coordinates have a fixed greatest common divisor.
Solution. If $d=\operatorname{gcd}\left(z_{1}, z_{2}\right)$, then by the Bezout's identity, there exists $p, q \in \mathbb{Z}$ such that $p z_{1}+q z_{2}=d$. Moreover, since $d \mid z_{i}$, we have

$$
\left[\begin{array}{cc}
p & q \\
-z_{2} / d & z_{1} / d
\end{array}\right] \in \mathrm{GL}(2, \mathbb{Z}) \text { and }\left[\begin{array}{cc}
p & q \\
-z_{2} / d & z_{1} / d
\end{array}\right] \cdot\left(z_{1}, z_{2}\right)=(d, 0) .
$$

By a similar argument, for any $\left(w_{1}, w_{2}\right) \in \mathbb{Z}^{2}$ such that $d=\operatorname{gcd}\left(w_{1}, w_{2}\right)$, there exists integers p^{\prime}, q^{\prime} and a matrix
$\left[\begin{array}{cc}p^{\prime} & q^{\prime} \\ -w_{2} / d & w_{1} / d\end{array}\right] \in \mathrm{GL}(2, \mathbb{Z})$ such that $\left[\begin{array}{cc}p^{\prime} & q^{\prime} \\ -w_{2} / d & w_{1} / d\end{array}\right] \cdot\left(w_{1}, w_{2}\right)=(d, 0)$.
So, it follows that

$$
\left[\begin{array}{cc}
p^{\prime} & q^{\prime} \\
-w_{2} / d & w_{1} / d
\end{array}\right]^{-1}\left[\begin{array}{cc}
p & q \\
-z_{2} / d & z_{1} / d
\end{array}\right] \cdot\left(z_{1}, z_{2}\right)=\left(w_{1}, w_{2}\right) .
$$

Therefore, if $\operatorname{gcd}\left(z_{1}, z_{2}\right)=\operatorname{gcd}\left(w_{1}, w_{2}\right)$, then $\left(z_{1}, z_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ are in the same orbit under the action.

Conversely, suppose that $\left(z_{1}, z_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ are in the same orbit under the action. Then there exists

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{GL}(2, \mathbb{Z}) \text { such that }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left(z_{1}, z_{2}\right)=\left(w_{1}, w_{2}\right)
$$

So, it follows that

$$
a z_{1}+b z_{2}=w_{1} \text { and } c z_{1}+d z_{2}=w_{2} .
$$

From the Bezout's identity, it follows that $\operatorname{gcd}\left(z_{1}, z_{2}\right) \mid w_{1}$ and $\operatorname{gcd}\left(z_{1}, z_{2}\right) \mid$ w_{2}, and hence we have:

$$
\begin{equation*}
\operatorname{gcd}\left(z_{1}, z_{2}\right) \mid \operatorname{gcd}\left(w_{1}, w_{2}\right) .(\text { Why? }) \tag{4}
\end{equation*}
$$

By switching the roles of $\left(z_{1}, z_{2}\right)$ and $\left(w_{1}, w_{2}\right)$ and following an analogous argument, we can conclude that

$$
\begin{equation*}
\operatorname{gcd}\left(w_{1}, w_{2}\right) \mid \operatorname{gcd}\left(z_{1}, z_{2}\right) \tag{5}
\end{equation*}
$$

Thus, from (4) and (5), it follows that $\operatorname{gcd}\left(w_{1}, w_{2}\right)=\operatorname{gcd}\left(z_{1}, z_{2}\right)$.

